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-----

Introduction

* In this topic, we will

Give motivation for this course

Describe the difference between discrete mathematics and
calculus (continuous mathematics)

Look at issues of trying to use computers to solve problems in
calculus

Describe absolute and relative error

Describe the decimal and binary representation of real numbers
Define rounding and significant digits

Describe the difference between accuracy and precision

Given an overview of the balance of this course



Background

Engineering design involves the application of mathematics and
science to solve real-world problems

— A failure of a design may cause harm to life, health, the
environment or the finances of a client or the public

The real world is modeled through equations and differential
equations

— Conservation and other physical laws
— Relationship between forces
— The superposition principle



Background

Only the most trivial problems can be solved exactly

— If a problem can be solved exactly,
what is the need for an engineer?

Problems can almost always be solved using a myriad of different
approaches

— Seldom, if ever, is there only one ideal approach

— Each approach will have benefits and drawbacks that must be
quantified and analyzed



Background

In determining the most appropriate approach,
it is necessary to test the various solutions

— For example,
e How robust is a solution
e [s the solution sensitive to initial conditions?




Background

One possible solution:
— Build multiple instances of your design and test them
— This is exceptionally costly

Alternatively, if we have a mathematical description,
can we not implement and simulate it, instead?




Background

» For example, a circuit is described by Maxwell’s equations

This involves partial differential equations

Using wires, this effectively restricts these equations to one
dimension

These partial differential equations can thus be simplified to
differential equations

The use of linear circuit elements such as capacitors, resistors,
inductors and memristors together with alternating current can
further simplify the solutions to these differential equations to
algebraic equations

Transistors, as well, may also be described linearly under the
conditions of small-signal model

More complex models may still be simulated using differential
equations
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Background

The response of a digital circuit can be described by a system of
linear equations

— This can involve millions of linear equations in an equal number
of unknowns

— Solving such a system cannot be done analytically in either a
reasonable amount of time or memory

Consequently, we will approximate such systems to find
approximate solutions

— Such solutions use numerical algorithms
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Discrete mathematics and calculus

In your courses on discrete mathematics and logic,

you were introduced to
Boolean logic
Set theory
Combinatorics
Graph theory

In your courses on continuous mathematics (calculus),

you were introduced to
Differentiation
Integration
Measure
Infinite series

11



Discrete mathematics and calculus

Concepts in discrete mathematics can be modeled using integers

— Large discrete systems will sometimes be approximated using
continuous systems

* For example, statistics
Concepts in calculus use real numbers
— Real numbers can only be stored as approximations
— Computers use floating-point numbers
— Every floating-point number represents a rational number

* We approximate all possible real numbers using a finite number
of rational approximations

12



Approximating the derivative

For example, from calculus, we know that

%f(x) = lirnf(x+h)_f(x)

h—0 h

Let’s try this out in C++:
double diff( double f( double ), double x, double h ) {
return (f( x + h ) - f( x ))/h;

This can be called with
std::cout << diff( std::sin, 1.0, 0.001 ) << std::endl;

13



Approximating the derivative

Trying a few examples:

Enter a value of x: 1.0

The derivative of sine at x = 1 is 0.5403023058681398
Enter a value of h (0.0 to quit): 0.1

The derivative is approximately 0.4973637525353891
Enter a value of h (0.0 to quit): 1le-5

Enter a value of h (0.0 to quit,: -12-19

The derivative is approximately 0.5403022473871033
Enter a value of h (0.0 to quit): 1e-15

The derivative is approximately ©.5551115123125783
Enter a value of h (0.0 to quit): 12-16

The derivative is approximately ©

Enter a value of h (0.0 to quit): 0.0

14




Approximating the derivative

Obviously, we have an issue here...

— The first step is to be able to describe how good an
approximation is to the exact solution

— In the next topic,
we will focus on the design of floating-point numbers

— The balance of the course will be focused on finding algorithms
that avoid the issues with floating-point numbers

15
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Error, absolute error and relative error

If x,pprox IS an approximation of a value x, we write x = x, and

X=X + &

approx

Consequently, the error ¢is always:

E=X—X

approx

Usually, however, we may refer to the absolute error:

Epy = ‘x—x

approx

We may also refer to the relative error and percent relative error:

‘x—x

approx

‘ X = ‘xapprox

-100%

16
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Error, absolute error and relative error

For example, from calculus,

f(x+h)=f(x)+ £ (x)h+%f(2)(§)h2

An approximation of f (x + 4) is
f(x)+ Y (x)h
The error of the approximation is
(@)
The absolute error is

L @) gy
2f (&)h

h2

e
=-1r7(¢)

17



Error, absolute error and relative error

* For example, from calculus,

f(x+h)=f(x)+ £ (x)h+%f(2)(r§)h2

* The relative error, assuming f (x + 4) # 0, is

|;f(2)(§)h2 E ‘f(z)(f)‘

f (x+h) _E\f(xm)\hz

18
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Approximations of =

Absolute Relative Percent relative
error error error

0.001593 0.0005070 0.05 %

0.001264 0.0004025 0.04 %

0.0000002668  0.00000008491 0.000008491 %

Note, we will always describe the absolute
and relative error to four digits.

19



Which do we prefer?

It is easier to discuss absolute error over error
— Neither, however, are unit-free:
 If you were told that the absolute error was 10 m
— This is great if you're measuring the distance to the Moon
— Somewhat sub-optimal if you're measuring the width of a wire
— The relative error is unit-free:

« Arelative error of 0.01 means that the approximation is good to
one part in a hundred, regardless of the magnitude of the exact
value

* A relative error of 0.01 is a 1% relative error

— The relative error is not defined for approximating zero,
but if you're approximating zero and you know it...

Note that the Taylor series gives an absolute error

20
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Decimal and binary representations

* Having described error, we will now look at the representation
of real numbers:
— The decimal representation
— Binary representation
— Rounding and significant digits

TO BE RECORDED!!

21



Decimal numbers

A non-zero real number is written as a decimal number when it
is in the form

d,dd,dd,d,-x10°
Here we have
— d, is a non-zero digit
— Each other d, is a decimal digit
— The exponent e is an integer

This is usually contrasted with fractional form for rational
numbers

22




Decimal numbers

If e is small in magnitude,
we may simply move the decimal point:

d,.ddddd,---x10°=d,dd,d,d,d. -

d,.did,dyd,ds---x10™" = 0.000d,d,d,d,d d - -

For example,

1.532x10* =153.2
1.8x10° =0.0018

23



Decimal numbers

Ifd, =0 for all k> n, we will say
d,.dd,ddd. d x10°

has a terminating decimal representation

24



Decimal numbers

Ifd, =0 for all k> n, we will say
d,.dddd,d. -d x10°

represents an n + 1 digit decimal number
For example,
3.140 is a 4-digit decimal number
6.62607015 x 10734 is a 9-digit decimal number

25



e

Binary numbers

A non-zero number is written as a binary number when it is in
the form

1.5,b,b,0,b ---%2°

Here
— The one leading bit must be non-zero; that is, 1
— Each b, in the mantissa is a binary digit or “bit”
— The exponent e is an integer

26




Binary numbers

If e is small in magnitude,
we may simply move the radix point:

1.b,b,b,b,b, ---x2° =1b,b,b, b,b, -+

1.bb,byb,bs---x 27 =0.000b,b,b,b,b,b - -

For example,

1.001101x2° =1001.101,
1.10011x27 =0.0110011,

27



AN e ot IR e Dheel Lh SR S NIRRT Sl
‘g" b4 D * .\w'“-:,‘:‘f‘*ll J X A

ALY
; "\’0 . V ) oy Wil vy A BN
e 3 B 7 . Rk e > o . S ;
Nt £y - R aatl e ™ R o g S
\ 7 B 'f *", " ~ ’;V “ T B \ N =

Binary numbers

If b, =0 for all k> n, we will say
1bbbb,b. b b x2°

has a terminating binary representation

28



Binary numbers

« If)H,=0forall k> n, we will say
b, bb,bb,b, b x2°

represents an n + 1 bit binary number
* For example,
1.010 is a 4-bit binary number
1.00111101001000 x 2734 is a 15-bit binary number

29
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Rounding

Most real numbers have infinitely many digits
— These require an infinite number of digits to store

— Even most terminating decimal representations have far more
digits than we care about

3.1415926535897932384626433832795028841971693993751
— However, we cannot store an infinite number of digits

— In fact, the most efficient means of implementing such numbers
is with a fixed number of digits

We will need to represent all such numbers by a decimal or
binary number with a fixed n digits in the mantissa

30



Rounding

 Which n + 1 digit number (n digits in the mantissa) do we use to
approximate any real number?

— The n + 1 digit number that has the smallest absolute error

— We will say that we round a real number x to the closestn + 1
digit decimal or binary number

31




Rounding

Rules for decimal rounding:

do 'd1d2d3d4d -d dn+1dn+2 '

— To round a decimal representation to n + 1 digits:
 Ifthedigitd,,,is0, 1, 2, 3 or 4, just drop all subsequent digits
 Ifthe digitd, ., is 5, 6,7, 8 or 9, but not exactly 5000---, we will

— Drop all subsequent digits

— Add “1” to d,, possibly resulting in a carry
For example,
1.534982 rounded to three digits is 1.53
1.534982 rounded to four digits is 1.535
1.534982 rounded to five digits is 1.5350
1.534982 rounded to six digits is 1.53498

32




Rounding

Rules for binary rounding:

bo 'b1b2b3b4b5 B 'bn bn+1bn+2 "'
— To round a binary representation to n + 1 bits:

 Ifthe nextbitb, , =0, justdrop all subsequent bits
 Ifthe next bitb,,, = 1 but not exactly 1000---, we will

— Drop all subsequent bits

— Add “1” to the last bit b,, possibly resulting in a carry

For example,

1.1011011 rounded to three bitsis 1.11
1.1011011 rounded to four bitsis 1.110
1.1011011 rounded to five bits is 1.1011

1.1011011 rounded to six bitsis 1.10111

33



Rounding

We skipped two cases:
d,dddd,d.--d 5000
bO 'b1b2b3b4b5 "t bn 1000---

Both these numbers are half-way between two n + 1 digit
numbers
— Do we round down (truncate) or round up (truncate and add)?

— If we choose one of these options, we will introduce a bias into
calculations

— Thus we choose one 50% of the time,
and the other the other 50% of the time:

» Ifd, is odd, we increment it, otherwise we leave it
» If b, =1, we increment it, otherwise we leave it

34




Rounding

Note that we have only discussed rounding in our formal
representation

d,.dd,ddd, - x10°
1.bb.bb,b, -+ x2°

If the decimal /radix point is anywhere else,
we count the digits starting at the most significant digit:

0.0005838125 rounded to 4 digits is 0.0005838
108513.829 rounded to 3 digits is 109000,
but it’s clearer if we presentitas 1.09 x 10°
0.00011000101, rounded to 5 bits is 0.00011001,
111001010.001, rounded to 4 bits is 111000000,
but it’s clearer if we presentitas 1.110 x 28

S
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Significant digits

* Another colloquial means of describing the relative error is to use the
concept of significant digits

‘x—x
B = PP <5%107¢

x
— We will never calculate this explicitly

 Instead, we will use the number of significant digits to give a rough
estimate of the relative error

— 1 significant digit is a relative error no greater than 50%
— 2 significant digits is a relative error no greater than 5%
— A rough approximation is as follows:
approx APProximates x to d significant digits
if both x and x rounded to d digits agree in all digits

approx

* X

36



Significant digits

From the definition, we can find a formula to calculate the
number of significant digits given the relative error:

& <5x107

rel —

37



Approximating the square root of two

The ancient Babylonians were aware that:
If x <~/2 then z>\/§
X

Ifx:\/ithen 2:\/5

X

Ifx>\/5then 2<\/§
X

— Thus, if x approximates \/5 , it follows the average of x and 2/x
must be a better approximation

1( 2} x 1
—|x+=|==+—
2 X 2 X

38




Approximating the square root of two

. : Absolute
Approximation
error
1 0.4142
1.5 0.08579

1.416666666 0.002453
1.414215686 0.000002124

Relative
error

0.2929
0.06066
0.001735
0.000001502

Percent
relative error

29.29 %
6.066 %
0.1735 %
0.0001502 %

Significant
digits

O W Bk =

Note, we will always round the absolute and
relative error to four digits.

39
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Precision versus accuracy

The concepts of precision and accuracy are usually introduced
via references to firearms

— The Tikka T3X TACT A1l is a more precise firearm than the AK-47
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Precision versus accuracy

Suppose we take these firearms to the range
— The Tikka T3X TACT A1l is a more precise firearm than the AK-47

O

— Give each rifle to a novice, the precision will be reduced:

O

— Introduce an error into the sights reduces the accuracy

O
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-----

Precision versus accuracy

“Precision” refers to the degree of consistency or repeatability in
measurements or system outputs, indicating how closely
repeated measurements or operations agree with each other

— Avruler is less precise than a micrometer

“Accuracy” refers to the degree to which a measurement or
system output matches the true or accepted value of the
quantity being measured.

42
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Precision versus accuracy

* Suppose you have a sensor reading an analog signal

— These readings are from a sensor that is reasonably
precise and the readings are accurate

43
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Precision versus accuracy

* Suppose you have a sensor reading an analog signal

— If the sensor is not correctly calibrated, the sensor is still precise,
but the readings are no longer accurate

44
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Precision versus accuracy

Suppose you have a sensor reading an analog signal
— You can spend less money and purchase a less precise sensor

— These readings are still as accurate as you can expect...

45

E \‘P :-;4.?
\'j.-"“' =

B NS - e - Ve
> ©°°7 Coufse intreduction /’?\ w07
v p! » '/"":-/Il‘

H .’;"
il LU
2222 % %000



% 4 X -] o ¥ NN SO . 13 “ B W s
M ! YOS ‘o ) 4 ‘9
A7k ,.'b_.a g e 3 7 S “ 4 o 4 )3 S, e

%1 b R N o o % C@Psemtro‘ductlon/'\\”

Precision versus accuracy

* Suppose you have a sensor reading an analog signal

— Again, a less-precise sensor can also be poorly calibrated,
resulting in less accurate readings than may be possible

46
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Precision versus accuracy

* Suppose you have a sensor reading an analog signal

— A precise sessor with accurate readings may be made less
accurate if the sensor is subject to an electric or mechanical shock

47
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Precision versus accuracy

* Suppose you have a sensor reading an analog signal

— A sensor can lose precision over time if it is not maintained

48
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Precision versus accuracy

* Suppose you have a sensor reading an analog signal

— Another loss in accuracy may result from a drift in settings

49

Y
'”)



Ao W 1] ol a4 - o o W s -
4 : L} 1 . ek A e & .\
v “.'- > A s, Kl _\I‘ ~.7" " v ‘) ‘ ; S\ ’ g ‘?‘.""
Papve N o N s o g 8 3 4 ’ S, . . -
Nt e ' N - 2 o8

Precision versus accuracy

When solving a problem numerically,
we will use one or more different algorithms

We will describe an algorithm through its accuracy and its
precision
— In general, all of our algorithms are parameterized by at least
one value:
« Avalue of 2 that may be made arbitrarily small
* An integer n that may be made arbitrarily large
— In approximating a solution x,

* An algorithm is accurate if as our parameters are adjusted,
the absolute error is correspondingly reduced

* One algorithm is more precise than another if the absolute error
for the first algorithm is generally less than the absolute error

of another
510)



Precision versus accuracy

Suppose you want to calibrate an analog-to-digital converter (ADC),
we require the maximum range of voltages [a, b]

What is a good approximation of a?
— How about min{x,, x,, x5, x4} ?

— You can show that this is a good approximation of not a but

4a+b b—a
=q+
5 5

— Similarly, max{x,, x,, x;, x,} is a good approximation of

a+4b:b_b—a
5 5

— This gives us two equations:

4a+ b= 5m1n{xl,x2,x3,x4}

a+4b=5max{xl,x2,x3,x4}

51
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Precision versus accuracy

* This gives us a system of two linear equations in two unknowns:
da+ b= Smln{xl,xz,x3,x4}

a+4b = Smax{xl,xz,x3,x4}
* Using linear algebra, we may now solve for both a and b:

4m1n{x1,x2,x3,x4}—max{xl,xz,x3,x4}
3
B 4max{x1,x2,x3,x4}—mln{xl,xz,x3,x4}

N 3

a =

S



Precision versus accuracy

Consequently,

min {x,,x,,X;,x, |

is a less accurate approximation of a than

4m1n{x1,x2,x3,x4}—max{xl,xz,x3,x4}

R

The mathematics is beyond the scope of this course,
but the first is more precise than the second

— It has a smaller standard deviation

53
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Precision versus accuracy

Suppose we are uniformly sampling from the interval [5, 25]
We could take 10 readings:
8,18,16.8,18.8,13.4,13 21, 15, 18,9.6
— We see the minimum of these, 8, is an okay approximation to 5
We could take 20 readings:

14.2,16.4,5.6,10.8,9.4,24.8,19.6, 13.8, 5.4, 14.6, 22.6, 24.6, 12.6, 8.4, 14.2, 8.8, 11.8, 23.6, 22.6, 14.2

— We see the minimum of these, 5.4, is a more accurate
approximation of 5

As n becomes larger, it seems that the minimum is a better
approximation of the lower bound 5

54



Precision versus accuracy

* [f we modify the other formula for more samples, we:
a= min{xl,...,xn}

nmm{xl,...,xn}—max{xl,...,xn}

a~
n—1

* For the previous examples, we have

|8 10min{x,,...,x,} —max{x,...,x,} _10-8-18.8 _

min{x,,...,x, | = : 5 6.8
20min {x,,..., %, } — 5.4
min{x .. x) = 5.4 min {x,, ,xzol}g max {X;,..., Xy} _ 20 5.;19 248 g

55



Looking ahead

* Thus, given n samples from [a, b]

— The minimum of the n» samples is not as accurate as our linear
combination of the minimum and maximum

— The minimum of the #» samples is more precise than our linear
combination of the minimum and maximum

— As we increase n, both formulas become more precise and
accurate

56
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In this courses...

The next topic in this course is to look at floating-point numbers
— Floating-point numbers only approximate real numbers
— There will be issues with them

* Recall that we could not even precisely approximate the
derivative using them

The balance of this course will be looking at numerical
algorithms in order to:

— Approximating the value of an expression

— Approximating solutions to algebraic equations and systems
— Approximating solutions to analytic equations and systems
— Optimization

57



-----

Summary

* Following this topic, you now

Understand the purpose of this course

Are aware of the differences between discrete mathematics and
continuous mathematics (calculus)

Have observed that floating-point numbers cause issues
Know the ideas behind:

* Absolute and relative errors

* Decimal and binary representations of numbers

* Rounding and significant digits
Understand the concepts of accuracy and precision

Have an overview of what will be covered in the upcoming
lectures

58
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Colophon

These slides were prepared using the Cambria typeface. Mathematical equations
use Times New Roman, and source code is presented using Consolas.
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical Gardens in
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.



Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.
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